Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction
نویسندگان
چکیده
Protein-protein docking simulations can provide the predicted complex structural models. In a docking simulation, several putative structural models are selected by scoring functions from an ensemble of many complex models. Scoring functions based on statistical analyses of heterodimers are usually designed to select the complex model with the most abundant interaction mode found among the known complexes, as the correct model. However, because the formation schemes of heterodimers are extremely diverse, a single scoring function does not seem to be sufficient to describe the fitness of the predicted models other than the most abundant interaction mode. Thus, it is necessary to classify the heterodimers in terms of their individual interaction modes, and then to construct multiple scoring functions for each heterodimer type. In this study, we constructed the classification method of heterodimers based on the discriminative characters between near-native and decoy models, which were found in the comparison of the interfaces in terms of the complementarities for the hydrophobicity, the electrostatic potential and the shape. Consequently, we found four heterodimer clusters, and then constructed the multiple scoring functions, each of which was optimized for each cluster. Our multiple scoring functions were applied to the predictions in the unbound docking.
منابع مشابه
A novel protocol for three-dimensional structure prediction of RNA-protein complexes
Three-dimensional structures of RNA-protein complexes are crucial for understanding their diverse functions. However, the number of the RNA-protein complex structures solved by experiments is still limited at present. To solve this problem, some computational protocols have been proposed to predict three-dimensional RNA-protein complex structures. But the prediction accuracies of these protocol...
متن کاملConstruction and Test of Ligand Decoy Sets Using MDock: Community Structure-Activity Resource Benchmarks for Binding Mode Prediction
Two sets of ligand binding decoys have been constructed for the community structure-activity resource (CSAR) benchmark by using the MDock and DOCK programs for rigid- and flexible-ligand docking, respectively. The decoys generated for each complex in the benchmark thoroughly cover the binding site and also contain a certain number of near-native binding modes. A few scoring functions have been ...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملNew benchmark metrics for protein-protein docking methods.
With the development of many computational methods that predict the structural models of protein-protein complexes, there is a pressing need to benchmark their performance. As was the case for protein monomers, assessing the quality of models of protein complexes is not straightforward. An effective scoring scheme should be able to detect substructure similarity and estimate its statistical sig...
متن کاملDoes a More Precise Chemical Description of Protein–Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?
Predicting the binding affinities of large sets of diverse molecules against a range of macromolecular targets is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for exploiting and analyzing the outputs of docking, which is in turn an important tool in problems such as structure-based drug design. Classical scoring functions assume a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2009